

Enzymes in brewing

Rocky Mountain District

Sten Aastrup

Application Manager Customer Solutions Brewing Novozymes A/S www.novozymes.com

... continuing enzyme presentation in May 2005

Coors Brewery Institute

Practical Brewing Enzymology

Tobin L. Eppard

Rocky Mountain District - MBAA May 11, 2005

MBAA – Rocky Mountain District

Today's presentation

- Recap of the nature of enzymes
- Malt enzymes vs. exogenous enzymes
- Benefits of using exogenous enzymes
 - optimization of "traditional brewing" resulting in
 - 1) More throughput,
 - 2) Use of non-malt raw materials,
 - 3) Reduction of off-flavors
 - production of new beer types
- New opportunities with exogenous enzymes
- Future collaboration between brewmasters and enzyme suppliers
 - Enzymes moving from" first aid kit" to "natural part of the process"
 - Enzymes moving from "part of a problem" to "part of a solution"

What are enzymes?

- Enzyme are
 - proteins with the same characteristics as any other protein in nature including that it is totally degradable and digestible
 - proteins with an active site
 - true catalysts

Enzymes are proteins

- build up of amino acids and folded in.....
- Secondary Structure
- Tertiary Structure
- Quaternary Structure

Enzymes are proteins with an active site

The enzyme captures one or more substrates of a biochemical reaction and brings them into intimate contact as an intermediate-enzyme complex at an active site containing binding groups and catalytic groups.

A Simple enzyme-catalyzed reaction can be described as follows:

$E + S \rightleftharpoons ES \rightarrow E + P$

where E, S and P represents the enzyme, substrate and product respectively and ES represents a reversible enzyme-substrate product

Enzymes are true catalysts

A catalyst significantly speeds up a chemical process that would otherwise occur very slowly, or not at all at the given conditions

The catalyst works by lowering the activation energy (ΔG) needed for the reaction to take place

The catalytic enzymes remain unchanged after the reaction

Enzymes are everywhere

- Enzymes are found in every living organism: man, animals, plants or microorganisms such as bacteria or fungi.
- Enzymes are the tools of nature. They cut and paste products such as nutrients. Enzymes speed up all vital biological processes.
- The enzymes in the stomach, for instance, ensure that food is cut into tiny particles that can be converted into energy in the body.
 Wherever one substance needs to be transformed into another, nature uses enzymes to speed up the process.

When you eat bread *a*-amylases in the salvia will already start to break down the bread starch to sugar in your mouth

Enzymes in brewing

Malt and yeast can provide the necessary enzymes to

- Convert starch into fermentable sugars
- Provide free amino nitrogen (FAN)
- Facilitate mash and beer filtration by hydrolysis of e.g. beta-glucan
- Convert fermentable sugar to alcohol and CO₂
- Catalyze formation of flavour substances

..... So - You **can** brew a pretty good beer without exogenious enzymes

But not without enzymes !

Why use exogenous enzymes when malt enzymes are available ??

- To do the job faster
- To do the job more effectively
- To do the job that malt enzymes are not able to do

Because industrial enzymes can be different from malt enzymes

Malt enzymes

 During germination of e.g. barley a lot of active enzymes are produced

 Most of these enzymes will remain in the final malt, and will act during mashing to form the wort components

Malt enzymes

Enzyme	Optimum mashing pH	Optimum mashing temperature	Inactivation temperature	Enzyme	Optimum mashing pH	Optimum mashing temperature	Inactivation temperature
β-glucanase	4.5-5-0	40-50°C	40 - 55	Xylanase	5.0	-	-
β-glucan solubilase	4.6-4.9	62°C	73	Pullanase	5.0-5.2	40°C	70°C
Endo- peptidase	5.0-5.2	50-60°C	70	Arabinosidase	4.6-4.7	40°C	60°C
Carboxy- peptidase	5.2	50-60°C	70	Cellulase	4.5-5.0	20°C	20°C
Amino/ dipeptidase	7.2-8.2	40-45°C	55	Lipase	6.8	35-40°C	60°C
Limit dextrinase	5.1	55-60°C	65	Peroxidase		40-50°C	65°C
β-amylase	5.4-5.6	60-65°C	70	Polyphenol- oxidase	-	60-65°C	80°C
α-amylase	5.6-5.8	70-75°C	80	Lipoxygenase	6.5	40°C	70°C

novozymes

Mashing programme for Pilsner-type beer

With exogenous enzymes you simply get More freedom to act More instruments to play on

Benefits of exogenous enzymes

- Supplement malt enzymes
- Add enzymes that are superior to malt enzymes
- Add enzymes with new properties

- Capacity increase
- Cost reduction
- Innovation
- Quality

Benefits of exogenous enzymes

- Optimization of "traditional brewing"
 - More throughput
 - Use of non-malt raw materials
 - Reduction of off-flavors

Best malt – Best equipment – Best enzyme

- Industrial tests were carried out in a modern European brewery making all-malt brews with well modifeid malt of international stardard using a traditional mashing profile
- A total of 29 test brews with **Viscoflow** compared with the normal production

The average results were the following

- 7% more brew house capacity (= 3 brews more per week)
- 40% longer filtration runs giving 40% less kieselguhr consumption
- 0.5% less "beer lost"
- More clear wort resulting in faster fermentation = 7% increased capacity
- Better clarity and taste of the final beer resulting in higher "Quality Index"

No change in raw materials, equipment, procedures etc

Viscoflow with the right xylanase

- Greatly reduces
 wort viscosity
- Promotes faster wort separation
- Together with β-glucanases, helps release more extract

Quantification of benefits

Economical Model for SBO enzym SBO = Smooth Brewing Operations	ies			
Parameters (to be filled in by the brewery)	Unit	Comments		
Enzyme Drice Enzyme Dosis Mal Frice Original gravity of cold wort Brewhouse extract yield Adjunt ratio Total beer sales volume No. of brews per day Total no. of operators employed in filtration average wage for one operator (man hour cost)	USD/kg g/ton malt USD/ton % Pl % % hl/year brews/day USD/year	15 150 320 12 76 of total kg raw 0 of total kg tota 1000000 8 10 3 32000	r material (mait and adjunct) Ir raw material (mait and adjunct)	Process figures and "today's prices
Average length of filterrun Kieselguhr comsumption Kieselguhr price Cost of disposal of kieselguhr sludge Water consumption for start-up/shut down of filter Fresh water price	hours kg/hl beer USD/kg USD/l hl/hl beer USD/hl	6 0,12 total per hi sa 0,82 0,1 0,25 total per hi sa 0,03	les beer les beer	
Waste water price Beer loss in filtration Prodcution cost of filtered beer Extract (Brewhouse Yield)	USD/hl % of volume USD/hl beer	0,1 1,5 approximately 8,3	y 25 % of the total loss after wort cooler	
Increase in brewhouse extract yield means less	malt consumption	1		
Extract yield without SBO enzyme Extract yield with SBO enzyme	%	76		Increased extract yield
Increase in extract yield	%	0,5		
Saving in malt each % extract yield is increased	kg/hl*%	0,215		
Lautering	000/11	0,0011		
Reduction of brew seqeunce (if lautering is both	tleneck) 🖙	more brew per day can	be prodcued and man-hours can be reduced	
No. of brews per day without SBO enzyme No. of brews per day with SBO enzyme Increase in in no. of brews	LISDIAL	8 8,56 0,56		Shorter mashing filtration time
	USD/III	0,0224		
Filtration				
I ne filtration time before filter blocking can be i	ncreased 🛶	reduction of man-hours	ce same amount of beer s, beer loss, kieselguhr and water consumption	
Filterrun length without SBO enzyme	hours	6		Longer beer filtration cycles
Filterrun length with SBO enzyme Increase in filterrun length	hours hours	10,8		
Cost saving KF	USD/hl sales bee	er 0,2361		
Economical Calculations				
Enzyme Treatment Costs	USD/ton malt	2,25		
Beer/ton malt Enzyme treatment costs PE	hl/ton malt USD/hl beer	60,43 0,0372		
KX	USD/hl beer	0,0344		
KL	USD/hl beer USD/hl beer	0,0224		
KX+KL+KF	USD/hl beer	0,2929		
Benefit per hl beer = (KX+KL+KF)-PE	USD/hl beer	0,2557 por	sitive result means cost savings by enzyme addition	Fotal cavinge
	03D/year	255701 ne	garive result means enzyme cause extra costs	

Quantification of benefits

Economical Model for SBO enzymes

SBO = Smooth Brewing Operations

Parameters (to be filled in by the brewery)	Unit	Comments
Enzyme Price	USD/kg	15
Enzyme Dosis	g/ton malt	150
Malt Price	USD/ton	320
Original gravity of cold wort	% PI	12
Brewhouse extract yield	%	76 of total kg raw material (malt and adjunct)
Adjunct ratio	%	0 of total kg total raw material (malt and adjunct)
Total beer sales volume	hl/year	1000000
No. of brews per day	brews/day	8
Total no. of operators employed in the brewhouse		10
Total no. of operators employed in filtration		3
average wage for one operator (man hour cost)	USD/year	32000
Average length of filterrun	hours	6
Kieselguhr comsumption	kg/hl beer	0,12 total per hl sales beer
Kieselguhr price	USD/kg	0,82
Cost of disposal of kieselguhr sludge	USD/I	0,1
Water consumption for start-up/shut down of filter	hl/hl beer	0,25 total per hl sales beer
Fresh water price	USD/hl	0,03
Waste water price	USD/hl	0,1
Beer loss in filtration	% of volume	1,5 approximately 25 % of the total loss after wort cooler
Prodcution cost of filtered beer	USD/hl beer	8,3

		11			
		Carolina .		-	
Extract (Brewhouse Yield)					
Increase in brewhouse extract yield means less	malt consumption				
Extract yield without SBO enzyme	%	76			
Extract yield with SBO enzyme	%	76,5			
Increase in extract yield	%	0,5			
Saving in malt each % extract yield is increased	kg/hl*%	0,215			
Cost saving KX	USD/hl	0,0344			
Lautering					
Reduction of brew seqeunce (if lautering is both	tleneck)	more brew	/ per day ca	in be prodcued an	d man-hours can be reduced
No. of brews per day without SBO enzyme		8			
No. of brews per day with SBO enzyme		8.56			
Increase in in no. of brews		0,56			
		-,			
Cost saving KL	USD/hl	0,0224			
Filtration					
The filtration time before filter blocking can be i	increased	less filterr	uns to prod	luce same amount	t of beer
		reduction	of man-hou	ırs, beer loss, kies	elguhr and water consumption
Filters in length without SPO onzymo	houro	6			
Filterrun length with SBO enzyme	hours	0 10.8			
Increase in filterrun length	hours	4.8			
	nouis	7,0			
Cost saving KF	USD/hl sales beer	r 0,2361			
Economical Calculations					
Enzyme Treatment Costs	USD/ton malt		2,25		
Beer/ton malt	hl/ton malt		60,43		
Enzyme treatment costs PE	USD/hi beer	0.0244	0,0372		
KX KI	USD/hl beer	0,0344			
KF	USD/hl beer	0,0224			
KX+KL+KF	USD/hl beer	0,2929			
Benefit per hl beer = (KX+KL+KF)-PE	USD/hl beer		0,2557	positive result means co	ost savings by enzyme addition

.

High % adjunct or/and undermodified malt

- Use of industrial enzymes in combination with undermodified malt or/and high ratios of adjunct gives additional savings on the cost of raw materials
- For these purposes β-glucanases and xylanases should be supplied with proteases. Special mixed products are made for this purpose

High % adjunct or/and undermodified malt

Mother Beer type	Recipe		Recommended enzyme products
Wort Type	ton/brew	ppm	
16% Plato	7,2 ton local malt	1000	Termamyl 120 L (for rice)
	3,2 ton Imported malt	100	Cemerix 2XL
	1,84 ton rice	150	Viscoflow MG
	1,0 ton sugar		
15% Plato	7.0 ton local malt	200	Termamyl 120 L
	3,0 ton imported malt	250	Ceremix 2XL
	1,9 ton local barley	150	Viscoflow MG
17% Plato	8,1 ton local malt	200	Termamyl 120 L
	3,5 ton imported malt	100	Ceremix 2XL
	2,61 ton sugar	150	Viscoflow MG
16% Plato	6,0 ton local malt	150	Termamyl 120 L
	4,5 local barley	650	Ceremix 2XL
		200	Viscoflow MG
15% Plato	6,2 ton local malt	150	Termamyl 120 L
	2,6 ton imported malt	100	Ceremix 2XL
	2,7 ton caramel malt	150	Viscoflow MG
16% Plato	3,9 ton local malt	1000	Termamyl 120 L (for rice)
	3,9 ton imported malt	150	Viscoflow MG
	3,0 ton rice	225	AMG 300 L

Direct off-flavor control

No formation of diacetyl

Diacetyl is below threshold level at the end of fermentation....

Indirect off-flavor control

Improved flavor stability

- High mashing-in temperature >60°C
- Low T2N formation
- No malt β-glucanase
- High release of β-glucan
- Termostable Viscoflow

Mash-in Temperature	Enzyme treatment	23°P time	27°P time	23°P Fk index	27°P Fk Index
52°C/125.6°F	Control No enzyme	11'	13'	0.22	0.50
52°C/125.6°F	Viscoflow	8'	7'	0.16	0.26
65°C/149°F	Control No enzyme	17'	14'	0.34	0.52
65°C/149°F	Viscoflow	9'	9'	0.19	0.34

Benefits of exogenous enzymes

- Production of new beer types
 - Low carbohydrate beer
 - Happoshu
 - "Third category beer"

High attenuation – Low carbohydrate content

- Approximately 25% of the carbohydrate extract is present in the beer as non-fermentable short-chain dextrins
- When production of highly attenuated beer types is desired, an increased fermentability is targeted by further hydrolysis of residual dextrins
- Traditional brewing methods can't compensate for the lack of enzymes necessary for the purpose

Extract and Degree of Attenuation

Starch modifying enzymes

NOVO

Enzymes for adjustment of attenuation

- Fungal alpha-amylase
 - Hydrolyzes 1,4-alpha linkages in dextrines
 - Mainly maltose and maltotriose and branched dextrins
- Pullulanase
 - Debranching enzyme
 - Hydrolyzes 1,6-alpha linkages of branched dextrins
 - Linear carbohydrates
- Amyloglucosidase
 - Hydrolyzes 1,4-alpha and 1,6-alpha linkages of dextrins from non-reducing end
 - Glucose

Fermentability increase

- From small adjustments to super attenuated beer
- Enzymes in mash or to fermenter
 - Fungal alpha-amylases, e.g. Fungamyl 800L
 - Amyloglucosidases, e.g. AMG 300L
 - Pullulanase, e.g. Promozyme 400L
- Small adjustments
 - Fungamyl 800L in fermenter
- Highly attenuated beer
 - AMG and Promozyme or Fungamyl at mashing in
 - Promozyme at mashing-in + Fungamyl in fermenter
 - AMG in fermenter

Fermentability increase

Enzymes for attenuation control can be added at:

• glucoamylase - pullulanase - α-amylase

alone or in combination

New opportunities with exogenous enzymes

- New products
- New processes
- New raw materials

- New mindset
 - by enzyme suppliers
 - by brewmasters

New image of enzymes in the brewing industry

• Not a "First aide Kit"

• Not a drug or medicine

• Not just for trouble shooting

New image of enzymes in the brewing industry

- Vitamins
- Natural processing aids
- Part of the solution
- A strategically choice
- For trouble prevention

New opportunities with exogenous enzymes

- Common ideation sessions
- Partnership

Still enzymes are the brewmaster's "helping hand", also in his/her new roles

- More for innovation
- Less for trouble shooting

Today's brewmasters are not in the brew house

New opportunities with exogenous enzymes

- Common ideation sessions
- Partnership

Still enzymes are the brewmaster's "helping hand", also in his/her new roles

- More for innovation
- Less for trouble shooting

Thank you for your attention - Cheers

